
Double-layer capacitance on a rough metal surface

L. I. Daikhin
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

A. A. Kornyshev* and M. Urbakh†

Institut für Energieverfahrenstechnik, Forschungszentrum Ju¨lich GmbH (KFA), 52425 Ju¨lich, Germany
~Received 30 November 1995!

An expression for the double layer capacitance ofrough metal-electrolyte, metal-semiconductor, or
semiconductor-electrolyte interfaces is derived which shows the interplay between the Debye length and the
lengths characterizing roughness. Different dependencies of the capacitance, as compared to the flat interface,
on the concentration of charge carriers in electrolyte or semiconductor are predicted. Examples of the typical
roughness spectra are considered. The cases of Euclidean roughness show weak dependence on the particular
form of the roughness spectrum, being sensitive only to its main parameters: the random mean square height
of roughness and correlation length. A method is proposed for thein situ characterization of surface rough-
ness: the measurement of surface roughness with a ‘‘Debye ruler,’’based on the conventional measurements
of the double layer capacitance.@S1063-651X~96!05305-3#

PACS number~s!: 68.45.2v, 41.20.Cv

I. INTRODUCTION

The Gouy-Chapman theory of electrolyte plasma near a
flat charged wall@1,2#, which appeared a decade earlier than
the Debye theory of bulk electrolytes@3#, is the basis of
many successful constructions in electrochemistry@4#, col-
loid science@5#, biophysics@6#, and semiconductor science
and technology@7#. In the low voltage limit, the Gouy-
Chapman theory gives a transparent result for the space
charge capacitance

C5CGC[«kS/4p, ~1!

where k21 is the Gouy~5Debye! length, « the dielectric
constant of the solvent, andS the area of the flat interface.
As it should be, the capacitance is inversely proportional to
the separation between the charge and counter charge, in
plasma provided by the Debye length.

A long period in electrochemistry was associated with the
studies performed on the liquid mercury drop electrode, and
later on Ga, InGa, and GaTl alloys@8#. Providing an ideally
smooth interface between the metal and electrolyte, liquid
electrodes allowed a set of classical results in electrocappil-
lary phenomena, adsorption and electrochemical kinetics.
Studies on solid electrodes~Cd, Pb, Bi, Sn, Cu! faced prob-
lems associated with a nonsmooth character of the interface
@9#. The concept of thegeometrical roughness factor
R5Sreal/S, i.e., the ratio of the true surface to the apparent
surface~flat cross-section area! became common@9#. How-
ever, in many cases, experimental data cannot be rationalized
in terms of this parameter only. The latter is not surprising.
Roughness may be responsible for additional characteristic
lengths, which may compete with other typical lengths in the

problem, giving rise to different functional dependencies on
electrolyte concentration and potential.

In this article we show how the competition between the
Debye length and the correlation length of roughness modi-
fies the Gouy-Chapman result. It is obvious,a priori, that the
limiting value of capacitance at short Debye lengths should
follow Eq. ~1! but with S replaced bySreal5RS. In the limit
of long Debye lengths the roughness would not be mani-
fested in the capacitance which would obey the native Eq.
~1!. How does the crossover between these two limits occur?
One may expect to recover the whole curve, modifying Eq.
~1!,

C5R̃~k!CGC, ~18!

where theroughness function R˜~k! varies betweenR̃~0!51
andR̃(`)5R.1. The problem for the theory is, then, to find
this function. For the case of a weak roughness, we derive
the general expression for the roughness function, establish
its limiting behavior, and study the cases of different surface
morphologies ~sinusoidal corrugation, random Gaussian
roughness, and self-affine fractal structures!.

In electrolyte solutions the Debye length can easily be
varied by changing the electrolyte concentration with no
effect on surface roughness. Experimental data on
R̃(k)5C/CGC may then be used for probing the roughness
of the metal surface in contact with electrolytes. The same
idea can be put into the basis of an evaluation of the rough-
ness of metal-semiconductor or semiconductor-electrolyte
interfaces. Debye length in semiconductors can be varied by
radiation or temperature-induced excitation of charge carriers
into the conduction band@10# ~doping will require a creation
of a new junction with an uncontrollable effect on the struc-
ture of the contact!.

The idea of a competition between the characteristic
scales of roughness and the optical and acoustic wavelengths
was explored in the classical works of Rayleigh@11# and
Fano@12#, and in the subsequent studies in interfacial optics
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@13–15#. Similar methods were used in the theory of friction
@16# and quartz microbalance@17#. The interplay between the
roughness spectra and diffusion lengths was intensively in-
vestigated in the context of the anomalous frequency depen-
dence of the electrochemical impedance@18–21# and diffu-
sion to the surface@22,23#. The competition between the
roughness scale and the Debye length has been explored
@24–28# in the context of the surface stability and surface
forces. However, the features of the space charge~double
layer! capacitance, the key quantity in electrochemistry, were
not considered.

We address mainly solid metal-liquid electrolyte systems,
but the basic results can be extended on other electrified
interfaces, such as metal-semiconductor, semiconductor-
electrolyte, chargeable biological interfaces, and metal-solid
electrolyte contacts@29#.

II. BASIC EXPRESSION FOR CAPACITANCE

A. Boundary problem for potential

Consider a rough metal surface in contact with an electro-
lyte. We take thez axis pointing towards the electrolyte and
describe the interface by the equationz5j(x,y). The plane
z50 is chosen such that the average value of the function
j(x,y) over the surface is equal to zero.

In the Gouy-Chapman theory, the distribution of the elec-
trostatic potentialf~r ! in the electrolyte is described by the
nonlinear Poisson-Boltzmann equation. As a first step we
restrict our consideration by its linearized version, valid for
low electrode potentialsf,kBT/e:

~¹22k2!f~r !50. ~2!

For a 1-1 binary electrolyte solution, the Debye length,
k215(«kBT/8pne2)1/2, wheren is the electrolyte concentra-
tion, « the dielectric constant of the solvent,e charge of
electron,T the temperature, andkB the Boltzmann constant
@for multivalent ions n must be replaced by the ‘‘ionic
strength’’ I5n(1/2)(z i

2n i wherezi and ni are the valence
and the stoichiometric coefficients of the ion of sorti #. For
nondegenerate semiconductors with one sort of charge carri-
ers,k215(«kBT/4pne2)1/2 wheren is the density of charge
carriers and« is the high frequency dielectric constant of the
semiconductor. An expression fork exists for solid electro-
lytes with the same type of dependence on mobile ions con-
centration and temperature@30#.

The solution of Eq.~2! must satisfy the boundary condi-
tion which fixes the potential at the metal-electrolyte inter-
face

f„x,y,z5j~x,y!…5f0 ~3!

relative to the zero level in the bulk of the electrolyte:
f~z⇒`!50.

B. Perturbation theory

Consider weakly rough surfaces for whichh, the charac-
teristic size of roughness in thez direction, is less than the
tangential one,l . The heighth denotes the root mean square
departure of the surface from flatness, and the correlation
length ~or a period! l is a measure of the average distance

between consecutive peaks and valleys on the rough surface.
We will also assume thath,k21.

Solving Eq.~2!, it is convenient to Fourier transform the
potential and the surface profile function from tangential co-
ordinates R5(x,y) to the corresponding wave vectors
K5(Kx ,Ky) as f ~K !5*dR f ~R!exp~2iK•R!. Equation~2!
then transforms to

H d2

dz2
2K22k2J f~K ,z!50. ~4!

According to the Rayleigh approximation@11# the solution
of Eq. ~4! in the half spacez,j(x,y), has the form

f~K ,z!5A~K !exp~2qKz!, ~5!

where qK5(k21K2)1/2. This approximation neglects the
terms proportional exp(qKz) which would be important in-
side deep protrusions and grooves in the metal surface, ig-
nored in our consideration. The boundary condition~3! leads
to the integral equation on the prefactorA~K !,

E dK

~2p!2
A~K !E dR exp@2qKj~x,y!#

3exp@2 i ~K 82K !•R#5~2p!2f0d~K 8!, ~6!

whered~K ! is the two-dimensional Diracd function.
Since we are bound to the case of weak roughness,

u¹j~x,y!u!1, hk!1, ~7!

the standard perturbation technique@11–17,20,23,25# may be
applied to findA~K !. The first exponential in Eq.~6! is ex-
panded into the series,

E dR exp@2qKj~x,y!#exp@2 i ~K 82K !•R#

.~2p!2d~K2K 8!2qKj~K 82K !

1
1

2
qK

2E dK 9

~2p!2
j~K 82K2K 9!j~K 9!, ~8!

and Eq.~6! may be solved by iterations. In order to deter-
mine the first nonvanishing correction to the capacitance
caused by roughness, we must findA~K ! up to the second
order inh. Hence

A~K !5A0~K !1A1~K !1A2~K !, ~9a!

where

A0~K !5~2p!2f0d~K !, ~9b!

A1~K !5f0q0h~K !, ~9c!

A2~K !5
1

2
f0q0E dK 8

~2p!2
h~K2K 8!h~K 8!~2qK82q0!.

~9d!

A0~K !, corresponds to the solution for the flat interface,
while the next two terms are the corrections due to the sur-
face roughness.
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C. Capacitance

In the linearized Poisson-Boltzmann approximation the
charge density distribution is proportional to the potential
r~r !52«k2f~r !/4p. The integral charge of the double layer
is equal with the sign minus to the charge of the metal sur-
faceQ, so that

Q5
«k2

4p E dRE
h~R!

`

dz f~r !. ~10!

Making the lateral Fourier transform off~r ! and using ex-
pressions~5! and ~9! we obtain the capacitanceC5Q/f0 in
the form of Eq.~18! with the roughness function

R̃~k!511kh2E dK

~2p!2
g~K !@~k21K2!1/22k#.

~11!

Here we introduced theheight-height correlation function

g~K ![
1

Sh2
uj~K !u2. ~12!

At h50, Eq. ~11! gives R~k!51, reproducing the Gouy-
Chapman result for capacitance of a flat interface.

Equation~11! is our central result: it correlates the ca-
pacitance with the morphological features of the interfaceh
andg~K !. It can describe the effect of both random rough-
ness and periodical corrugation. In the latter case the integral
*dK /~2p!2 should be replaced by the sumS21(K .

III. LIMITING LAWS

Consider the behavior of expression~11! for two extreme
cases: ~a! the Debye lengthk21 is shorter than the smallest
characteristic correlation length of roughnesslmin , and ~b!
k21 is greater than the maximal correlation lengthlmax.
These two limiting cases can be realized experimentally,
changing, for instance, the electrolyte concentration. Note
that the concept of characteristic correlation length breaks
down for fractal surfaces, which we discuss specially in Sec.
IV B.

Fork21!lmin one may expand~k
21K2!1/2 in the integrand

of Eq. ~11! using the smallness of~K/k!2, Eq. ~11! then re-
duces to

R̃~k!.RH 12
1

2R

^H2&
k2 J . ~13!

Here we used the expression for the mean area of a random
surface,

Sreal
S

[R511
h2

2 E dKK2

~2p!2
g~K !, ~14!

valid up to the terms of the second order inj, and the defi-
nition for the mean square curvature

^H2&[
h2

4 E dKK4

~2p!2
g~K !. ~15!

Equation~13! shows, as expected, that the roughness func-
tion R̃~k! approaches the geometrical roughness factorR for
the small Debye lengthk21 ~largen!. With the increase of
k21 ~the decrease ofn! it decreases with respect toR, the
correction being proportional to the square of the Debye
length, i.e., it is inversely proportional to the charge carriers
concentration.

In the range of large Debye lengths~low concentrations!,
k21@lmax, one may expand the term~k21K2!1/2 in the inte-
grand of Eq.~11! in ~k/K2!2 to obtain

R̃~k!.11
kh2

L
2k2h2. ~16!

Here the length

L[H E dK

~2p!2
Kg~K !J 21

~17!

is of the order oflmax. As expected, at very low Debye
lengths the roughness of the surface is not ‘‘seen’’ in the
capacitance. The first correction to the flat surface result is
linear ink.

Approving our expectations, Eqs.~13! and ~16! specify
how the roughness function approaches the two obvious lim-
its.

IV. EXAMPLES OF DIFFERENT SURFACE
MORPHOLOGIES

A. Euclidean surfaces

The asymptotic laws for the capacitance at small and
large Debye lengths@given by Eq.~18! and Eq.~13! or Eq.
~16!# are universal for weak Euclidean roughness. However,
the specific form of the roughness function depends on the
morphology of the interface. When the roughness may be
described by a one scale correlation function,

g~K !5 l 2u~Kl !, ~18!

Eq. ~11! can be rewritten as

R̃~k!511
h2

l 2
f ~k l !, ~19!

where

f ~x!5
1

2p
x2E

0

`

dt tu~ t !@~11t2/x2!1/221#. ~20!

In this case the roughness induced change of the capaci-
tance is proportional to the square of the ‘‘roughness slope’’
h/ l and thescaling function f(x) of a single variable: the
ratio of the correlation length~period! of roughness to the
Debye length.

Consider two examples of surface morphologies, which
lead to two different scaling functions and represent two
types of roughness: deterministic and random.

~1! Periodical corrugation: j~R!5h sin(2px/ l s). In
this case,K5~2pm/ l s ,0! and j~K !5hS(dm,1 2dm,21)/2i ,
wherem50,61,62,. . . anddm,61 is the Kronecker symbol.
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This leads to the roughness factorR5112p2h2/ l s
2 and to

the scaling function of argumentk l s ,

f ~x!5x2H S 11
4p2

x2 D 1/221J . ~21!

~2! Gaussian roughness.The most widely used approxi-
mation for a random Euclidean roughness is the isotropic
Gaussian model. It characterizes the roughness spectrum by
two parameters: the rms heighth and the tangential corre-
lation lengthl . In this caseg~K !5p l G

2 exp~2l G
2K2/4! @i.e.,

u(t)5p exp~2t2/4!#, the roughness factorR5112h2/ l G
2 ,

and the mean square curvature^H2&58h2/lG
4 . The scaling

function ofk l G here takes the form

f ~x!52Apx exp~x2/4!@12F~x/2!#, ~22!

whereF(z) is the probability function@31#.
Note that the meaning of the characteristic lateral length

may be different for different types of roughness. For ex-
ample, at the same rmsh, the same geometrical roughness
factor R would correspond tol s5p l G . Then, according to
Eq. ~19!, one should compare the Gaussian scaling function
with the sinusoidal scaling function divided byp2. Such a
comparison~Fig. 1! shows a small difference in the range of
intermediatek l . Naturally, both models reproduce the limit-
ing laws ~13! and ~16! @32#. The roughness function for the
Gaussian model is shown in Fig. 2. The framework of the
perturbation theory~7! does not allow us to consider the
region of largek, kh>1. However, as we see from Fig. 2, far
before this range the roughness function levels off to the
geometrical factorR. Therefore this condition is not critical.

B. Self-affine fractal surfaces

In the above given examples the roughness spectrum was
characterized by a single in-plane correlation lengthl . How-
ever, recent efforts aimed at understanding the properties of
rough solid surfaces have demonstrated that a wide class of
them is well represented by a self-affine model of roughness
@33#. In this case, within a certain confined range of distances
there is no characteristic scale, i.e., the height-difference cor-
relation function,̂ uh~R81R!2h~R8!u2&, follows a power law

^uh~R81R!2h~R8!u2&;~R/ l !2H, lmin!R! l . ~23!

Here, l is the crossover length from the self-affine to satu-
rated roughness, and its interplay withk21 is important. The
minimum self-affinity scale would not enter the results if
k21.lmin , which is usually the case forlmin of atomic di-
mensions andk21 for solutions of moderate concentrations.
The height-difference correlation function is related to the
height-height correlation function, introduced above, as

^uh~R81R!2h~R8!u2&52h2@12g~R!#, ~24!

where g(R) is obtained fromg~K ! by an inverse Fourier
transform.

The roughness exponentH, 0,H<1, determines the sur-
face texture~the degree of surface irregularity!, and is asso-
ciated with a local fractal dimension,D532H @33# . Small
values ofH correspond to extremely jagged or irregular sur-
faces, while large values ofH describe surfaces with smooth
hills and valleys. As our approach is valid only for slightly
rough surfaces, it would not be wise to considerH,1/2.

The height-difference correlations of any real surface
must saturate at sufficiently large tangential lengths to the
value 2h2. A ‘‘reduced’’ self-affine scaling law has been
proposed@34# that has such a long-length cutoff

^uh~R81R!2h~R8!u2&52h2$12exp@2~R/ l !2H#%.
~25!

ForH51 Eq. ~25! reduces to the Gaussian correlation func-
tion discussed above. The 2D–Fourier transform of this
function cannot be calculated analytically, except for the
cases ofH51 andH50.5. Therefore it is convenient to di-
rectly approximate the functiong~K ! ~which we need for the
calculation of capacitance!. For 1/2<H,0.8, the approxima-
tion

g~K !5
2p l 2

~11K2l 2/2H !H11 , ~26!

suggested in Ref.@35#, reproduces fairly well the Fourier
transform of the correlation functiong(R) for self-affine
fractal surfaces. The use of approximation~26! leads to the
scaling function

f ~x!5~x!2~12H !p~2H !H11
G~H21/2!

G~H11/2!

3F~H11,H2 1
2 ,H1 1

2 ,122H/x2!, ~27!

FIG. 1. Scaling functions for rough Euclidean surfaces.~1!
f (x)/p2 for sinusoidal corrugation@Eq. ~21!#, ~2! f (x) for Gaussian
roughness@Eq. ~22!#. @The factor 1/p2 is introduced to compare

R̃~k! for the two morphologies at the same geometrical roughness
factor#.

FIG. 2. Roughness functionR̃ versus the inverse Debye length,
k @Eqs. ~19!, ~22!# for the random Gaussian surfaces.«580, h55
nm, l5~1! 10, ~2! 15, ~3! 20 nm.
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whereG(z) is the Euler gamma function andF(a,b,g,z) is
the Gauss hypergeometrical function@31#. As before, thek
dependence of the roughness function is determined by the
one-parameter scaling function. However, the asymptotic be-
havior ofR~k! for k21!l

R̃~k!511
h2

l 2
~k l !2~12H !Ap~2H !H

3G~12H !G~H21/2!, k21! l ~28!

differs essentially from the case of Euclidean surfaces, given
by Eq. ~13!. The reason for this is quite obvious. Fork21!l
the roughness function should be close to the geometrical
roughness factorR5Sreal/S, but for the fractal surfaces the
value of the true areaSreal depends on the resolution~k

21! of
an instrument used for the measurements. As we have al-
ready mentioned Eq.~28! cannot be used for the description
of the surfaces with the roughness exponentH close to unity.
The reflection of this drawback is the functionG~12H! on
the right-hand side of Eq.~28!, which has a pole forH51.

The asymptotic behavior of the roughness function for
k21@l

R̃~k!511
h2

l 2
~k l !&~pH !3/2

G~H21/2!

G~H11!
, k21@ l

~29!

is similar to the case of Euclidean surfaces. Due to the satu-
ration of the rms roughness at large lateral distances the
double layer does not feel fractal features of the surface
when the ‘‘yard stick’’k21 exceedsl .

The scaling functionf (k l ) is shown in Fig. 3 over the
wide range ofk l values. In agreement with Eq.~28!, the
fractional power law is observed in the self-affine regime,
k l.1. Typical curves of the roughness function for self-
affine surfaces are plotted in Fig. 4.

IV. COMPACT LAYER CONTRIBUTION

By extending the linearized version of the Gouy-
Chapman theory to rough surfaces we have established how
the space charge linear response capacitance at rough
interfaces~metal-electrolyte, metal-semiconductor, or semi-
conductor-electrolyte! differs from the one for the flat sur-
faces. In semiconductors the concentration of charge carriers
is relatively small and when the contact is perfect the space
charge entirely determines the net interfacial capacitance. In
the context of the metal-electrolyte interface, we have con-
sidered, essentially, the so calleddiffuse layercapacitance. A
common assumption in electrochemistry is that one must
also introduce the contribution of thecompact layerwith the
capacitanceCH , connected in series with the diffuse layer
contribution. The total capacitance is then given by

1

Ctot
5

1

CH
1
1

C
. ~30!

This ansatz was first suggested by Grahame@36#, who com-
bined the ideas of Helmholtz about the existence of a mono-
molecular layer on the electrode with the Gouy-Chapman
theory. It was assumed that electrolyte ions do not penetrate
into the compact layer and its capacitance does not depend
on their concentration.

The validity of the Gouy-Chapman-Grahame theory is
usually checked by drawing theParsons-Zobel plots: 1/Ctot
versus 1/CGC for different electrolyte concentrations@37#.
The straight line with the unit slope approves the Gouy-
Chapman theory for the diffuse layer, and the corresponding
intercept determines the value of 1/CH . Slopes lower than 1
are usually attributed to the geometrical roughness factor@9#.
Deviations from the straight line are regarded as indications
of specific adsorption of ions@9#.

The whole concept, based on the division of the compact
and diffuse layer parts, was always a matter of concern in
view of molecular dimensions of the compact layer@38#.
However, the contribution to capacitance, independent of
electrolyte concentration, i.e., the finite value of the intercept
on the Parsons-Zobel plot, is an experimental fact. Further-
more, the molecular theory of the electrolyte near a charged
hard wall @39# and the phenomenological nonlocal electro-
static theory@40# both predict such a contribution without an
artificial introduction of any ‘‘compact layers.’’ This results
as an effect of the short range structure of the solvent@41#.

FIG. 3. Scaling functions for the self-affine fractal surfaces
@Eqs.~27!#. The roughness exponentH5~1! 0.55,~2! 0.6, ~3! 0.65,
~4! 0.7.

FIG. 4. Roughness functionR̃ versus the inverse Debye lengthk
@Eqs.~19!, ~27!# for the self-affine fractal surfaces.«580,h55 nm,
l5100 nm,H5~1! 0.55, ~2! 0.6 ~3! 0.65, ~4! 0.7.
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Experimental data for a set of simple metals and polar sol-
vents give typical values of the compact layer capacitance
@9,38#, ~4pCH/Sreal!

2150.120.8 Å.
Equations~18! and ~11! suggest that roughness leads to

deviations of Parsons-Zobel plots from linearity. Figure 5
demonstrates it for the case of the Gaussian roughness, with-
out a compact layer contribution~the intercept is kept at
zero!. Adding the compact layer one should bear in mind that
CH would also vary with the variation ofR.

Several conclusions follow from these figures.
~1! ‘‘Negative’’ intercept.Extrapolation of the curves in

Fig. 3~a! from the smallk range to the limit of largek
~1/CGC⇒0! gives an ‘‘apparent’’negativeintercept. Equa-
tion ~16! derived for Euclidean surfaces gives the value of
the intercept24ph2/«LS. The intercept with account for a
compact layer is given by

1

Ctot
~extrap! 5

1

CH
2
4ph2

«LS
. ~31!

For h550 Å, l5100 Å our calculations give
4ph2/«L56.5 Å of the intercept. Since the experimental
values of the intercept are usually positive, that means that
the negative extrapolation value is compensated by the com-
pact layer contribution. Thus in order to get a value of
C tot

~extrap!>20 mF/cm2, which is typically observed, one must
haveCH,10 mF/cm2. Therefore the evaluation of the true
compact layer contribution from the extrapolated intercept
needs an essential correction for rough surfaces.

~2! Extended region of non-Gouy-Chapman behavior.
Considerable curvature of the plot is seen, e.g., in Fig. 3 in
the region ofk l;1. However, generally, the Parsons-Zobel
plots are not convenient for the characterization of
the surface roughness. More convenient would be the plot
of R̃~k!.$1/Ctot21/CH%21$CGC%

21 versusk. If the accuracy
would allow, the limiting laws~13! and~16! may be studied,
giving important roughness parameters:^H2& andh2/L. A
nonlinear regression fit of the whole curve would givel . In
the case of self-affine surfaces the measurements ofR̃~k!
versusk in the region of high concentrations would give the
roughness exponentH.

~3! Compensation of deviations from the Gouy-Chapman
theory at large concentrations.The interference between the
solvent structure and Debye length rounds the Parsons-Zobel
plot down from the straight line in the high concentration
region@41#. The roughness effect does the opposite. The two
effects may compensate each other for very smalll , and the
Parsons-Zobel plot will appear ‘‘more straight’’ than it
should be for an ideally flat surface.

V. CONCLUSION AND OUTLOOK

We have developed a theory of the space-charge double
layer capacitance at rough surfaces. The interplay between
the Debye length and the lengths characterizing surface
roughness was studied. The derivation of the main formulae
was limited to the case of weak roughness, i.e., when the
amplitude of height fluctuationsh is smaller than the corre-
lation length l . Extension on the case of strong roughness
would require laborious efforts. However, the two limiting
laws of small and large Debye lengths, obtained in the
present work, should retain for the case of strong roughness.
Thus as an interpolation, one may extend our present results
to the case ofh; l . However, ath@ l the form of the rough-
ness function may differ considerably from the obtained ex-
pressions.

A method for the study of surface roughness by the mea-
surements of the space charge double layer capacitance at
varied Debye length is suggested. Within the framework of
the linearized Poisson-Boltzmann approximation used, the
Debye length variation is provided by the variation of the
density of charge carriers. The effective Debye length can
also vary with the variation of electrode potential. The form
and the magnitude of this effect depend on the system~the
trends could be different for liquid and solid electrolytes
@30#!. The nonlinear Poisson-Boltzmann variant of the theory
is currently in progress.

The suggested method for the study of surface roughness
should be first tested on surfaces with roughness character-
istics known from alternative conventional studies, such as,
electron microscopy in UHV,in situ scanning tunnel micro-

FIG. 5. Parsons-Zobel plots: inverse space-charge capacitance
for the random Gaussian surfaces versus the inverse Gouy-
Chapman capacitance@Eq. ~1!#. Curves:~—! the plot, calculated via
Eqs. ~18!, ~19!, ~22!; ~-•-•-! Gouy-Chapman plot;~---! the large
Debye length~small CGC! asymptotic law.h55 nm, l510 nm,
«5~a! 80, ~b! 20.
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scope~STM! or optical methods. It would also be interesting
to test the theory predictions on electrodes with determinis-
tic, designed roughness, e.g., on a sinusoidally corrugated
surface. In such experiments one may vary not only the De-
bye length, but the corrugation period in a series of samples.

As an in situmethod, it will be of special value when the
medium bounding the metal is nontransparent for radiation
and inaccessible to STM. This would be the cases of metal-
semiconductor or metal-solid electrolyte interfaces, in par-
ticular. Strictly speaking, we would need the nonlinear vari-
ant of the theory, to have a framework for the interpretation
of the data, based on the potential variation of the Debye
length. Meanwhile, one may focus on the experiments on the
capacitance of the metal-electrolyte interface at the small

surface charges at varied ionic strength of the surface inac-
tive electrolytes. It would be fascinating if this classical tech-
nique of electrochemistry shed light on the microroughness
of metal surfaces. Since the interpretation here is transparent
and unambiguous, we believe that this method will soon be
in common use.
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