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Double-layer capacitance on a rough metal surface
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An expression for the double layer capacitance rofigh metal-electrolyte, metal-semiconductor, or
semiconductor-electrolyte interfaces is derived which shows the interplay between the Debye length and the
lengths characterizing roughness. Different dependencies of the capacitance, as compared to the flat interface,
on the concentration of charge carriers in electrolyte or semiconductor are predicted. Examples of the typical
roughness spectra are considered. The cases of Euclidean roughness show weak dependence on the particular
form of the roughness spectrum, being sensitive only to its main parameters: the random mean square height
of roughness and correlation length. A method is proposed fomtlsitu characterization of surface rough-
ness: the measurement of surface roughness with a “Debye rulbased on the conventional measurements
of the double layer capacitand&1063-651X96)05305-3

PACS numbes): 68.45-v, 41.20.Cv

I. INTRODUCTION problem, giving rise to different functional dependencies on
electrolyte concentration and potential.

The Gouy-Chapman theory of electrolyte plasma near a In this article we show how the competition between the
flat charged wal[1,2], which appeared a decade earlier thanDebye length and the correlation length of roughness modi-
the Debye theory of bulk electrolytd$], is the basis of fies the Gouy-Chapman result. It is obvioagyriori, that the
many successful constructions in electrochemifly col-  limiting value of capacitance at short Debye lengths should
loid science[5], biophysics[6], and semiconductor science follow Eq. (1) but with S replaced byS,.,=RS In the limit
and technology[7]. In the low voltage limit, the Gouy- of long Debye lengths the roughness would not be mani-
Chapman theory gives a transparent result for the spadested in the capacitance which would obey the native Eq.

charge capacitance (1). How does the crossover between these two limits occur?
One may expect to recover the whole curve, modifying Eq.
C=Cgc=¢ekS4m, 1 @,
where ! is the Gouy(=Debya length, ¢ the dielectric C=R(x)Cqc, 1)

constant of the solvent, arsl the area of the flat interface. _ _
As it should be, the capacitance is inversely proportional tovhere theroughness function &) varies betweerR(0)=1
the separation between the charge and counter charge, #amdR(«)=R>1. The problem for the theory is, then, to find
plasma provided by the Debye length. this function. For the case of a weak roughness, we derive
A long period in electrochemistry was associated with thethe general expression for the roughness function, establish
studies performed on the liquid mercury drop electrode, ands limiting behavior, and study the cases of different surface
later on Ga, InGa, and GaTl alloy8]. Providing an ideally morphologies (sinusoidal corrugation, random Gaussian
smooth interface between the metal and electrolyte, liquidoughness, and self-affine fractal structires
electrodes allowed a set of classical results in electrocappil- In electrolyte solutions the Debye length can easily be
lary phenomena, adsorption and electrochemical kineticszaried by changing the electrolyte concentration with no
Studies on solid electrodé€d, Pb, Bi, Sn, Cufaced prob- effect on surface roughness. Experimental data on
lems associated with a nonsmooth character of the interfacR(«) = C/Cgc may then be used for probing the roughness
[9]. The concept of thegeometrical roughness factor of the metal surface in contact with electrolytes. The same
R=S.4(S, i.e., the ratio of the true surface to the apparentidea can be put into the basis of an evaluation of the rough-
surface(flat cross-section argdbecame commof9]. How- ness of metal-semiconductor or semiconductor-electrolyte
ever, in many cases, experimental data cannot be rationalizégterfaces. Debye length in semiconductors can be varied by
in terms of this parameter only. The latter is not surprising.radiation or temperature-induced excitation of charge carriers
Roughness may be responsible for additional characteristitito the conduction bandL0] (doping will require a creation
lengths, which may compete with other typical lengths in theof a new junction with an uncontrollable effect on the struc-
ture of the contagt
The idea of a competition between the characteristic
*Corresponding author. Electronic address: rbe016@djukfall scales of roughness and the optical and acoustic wavelengths
TPermanent address: School of Chemistry, Tel Aviv University,was explored in the classical works of Rayleifghl] and
69978 Tel Aviv, Israel. Electronic address: urbakh@ccsg.tau.ac.il Fano[12], and in the subsequent studies in interfacial optics
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[13-15. Similar methods were used in the theory of friction between consecutive peaks and valleys on the rough surface.
[16] and quartz microbalandd7]. The interplay between the We will also assume thdt<x .
roughness spectra and diffusion lengths was intensively in- Solving Eq.(2), it is convenient to Fourier transform the
vestigated in the context of the anomalous frequency depempotential and the surface profile function from tangential co-
dence of the electrochemical impedant8—21 and diffu- ordinates R=(x,y) to the corresponding wave vectors
sion to the surfacg¢22,23. The competition between the K=(K,,K,) asf(K)=/[dR f(R)exp(—iK-R). Equation(2)
roughness scale and the Debye length has been exploréuen transforms to
[24-29 in the context of the surface stability and surface
forces. However, the features of the space chddypaible
layen capacitance, the key quantity in electrochemistry, were
not considered.

We address mainly solid metal-liquid electrolyte systemsAccording to the Rayleigh approximatidd 1] the solution
but the basic results can be extended on other electrifie@f Ed. (4) in the half spaceg<£(x,y), has the form
interfaces, such as metal-semiconductor, semiconductor-

d2
‘——KZ—KZ]Q')(K,Z):O. (4)

dz

electrolyte, chargeable biological interfaces, and metal-solid $(K.Z)=A(K)exp(—ak2), ®)
electrolyte contactp29]. where gy = (k?>+K?)Y2 This approximation neglects the
terms proportional expglz) which would be important in-
Il. BASIC EXPRESSION FOR CAPACITANCE side deep protrusions and grooves in the metal surface, ig-

nored in our consideration. The boundary conditiBnleads

to the integral equation on the prefacd(K),
Consider a rough metal surface in contact with an electro-

A. Boundary problem for potential

lyte. We take the axis pointing towards the electrolyte and dK

describe the interface by the equatina £(x,y). The plane J (2m)?2 A(K)J dR exd —aké(x,y)]

z=0 is chosen such that the average value of the function

&(x,y) over the surface is equal to zero. xexd —i(K'—K)-R]=(2m)2¢py8(K"), (6)

In the Gouy-Chapman theory, the distribution of the elec- , . . . .
trostatic potentiaki(r) in the electrolyte is described by the Whered&K) is the two-dimensional Diraé function.
nonlinear Poisson-Boltzmann equation. As a first step we SiNceé we are bound to the case of weak roughness,
restrict our consideration by its linearized version, valid for IVéx,y)|<l, hr<l, @

low electrode potentialg<<kgT/e:
(V2= 1?) (1) =0 @) the standard perturbation techniqud-17,20,23,2bmay be
' applied to findA(K). The first exponential in Eq6) is ex-

For a 1-1 binary electrolyte solution, the Debye length,Panded into the series,

k 1=(ekgT/8mne?)2 wheren is the electrolyte concentra-

tion, e the dielectric constant of the solverd, charge of f dR exd —qré(x,y)]exd —i(K'—K)-R]
electron,T the temperature, ankl the Boltzmann constant

[for multivalent ionsn must be replaced by the “ionic
strength” | =n(1/2)2z?v, wherez and »; are the valence
and the stoichiometric coefficients of the ion of st For 1 dK”
nondegenerate semiconductors with one sort of charge carri- t5 qKzf 22 §(K'=K—=K")§(K"), (8)

ers, k 1=(ekgT/4mne®)Y? wheren is the density of charge 7

carriers anc is the high frequency dielectric constant of the ang Eq.(6) may be solved by iterations. In order to deter-

semiconductor. An expression farexists for solid electro- mine the first nonvanishing correction to the capacitance
lytes with the same type of dependence on mobile ions consaysed by roughness, we must fiadk) up to the second

=(2m)?5(K=K")—qé(K' = K)

centration and temperatufa0]. order inh. Hence
The solution of Eq{(2) must satisfy the boundary condi-
tion which fixes the potential at the metal-electrolyte inter- A(K)=Ay(K)+A;(K)+A,(K), (9a)
face
where
¢(X1y1Z= g(xiy))zd)o (3)
Ao(K)=(2m)?¢o8(K), (9b)
relative to the zero level in the bulk of the electrolyte:
H(z=2)=0. A1(K) = ¢oaoh(K), (90)
. 1 dK'’
B. Perturbation theory Ay(K)= > ¢OQOJ (ZT)Z h(K—K")h(K")(20x:—do)-
Consider weakly rough surfaces for whibhthe charac- (9d)

teristic size of roughness in thedirection, is less than the

tangential onel. The heighth denotes the root mean square Ay(K), corresponds to the solution for the flat interface,
departure of the surface from flatness, and the correlatiowhile the next two terms are the corrections due to the sur-
length (or a period | is a measure of the average distanceface roughness.
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C. Capacitance Equgtion(13) shows, as expected, that the roughness func-
In the linearized Poisson-Boltzmann approximation thelion R(x) approaches the geometrical roughness faRtéor

1
charge density distribution is proportional to the potentialth® small Debye lengtik* (largen). With the increase of

*l
p(r)=—=ex2(r)l4m. The integral charge of the double layer X = (the decrease af) it decreases with respect ®, the
is equal with the sign minus to the charge of the metal suroTection being proportional to the square of the Debye
faceQ, so that length, i.e., it is inversely proportional to the charge carriers

concentration.
K o In the range of large Debye lengtliew concentrations
Q=,— dRJh - dz ¢(r). (10 k*>l,,. one may expand the terfa®+K?? in the inte-
(R) grand of Eq.(11) in (x/K?)? to obtain
Making the lateral Fourier transform af(r) and using ex- h2
pressiong5) and (9) we obtain the capacitand@= Q/d¢ in R(k)=1+ KT_ «2h2. (16)

the form of Eq.(1") with the roughness function

_ dK Here the length
R(K)=1+Kh2f 22 g(K)[(k?+K?)V2—k].

dK -1
(11 LEH (ZT)ZKQ(K)] (17

Here we introduced thheight-height correlation function )
is of the order ofl .. As expected, at very low Debye

1 lengths the roughness of the surface is not “seen” in the
g(K)= S |£(K)|2. (12 capacitance. The first correction to the flat surface result is
linear in «.

Approving our expectations, Eq$l3) and (16) specify

At h=0, Eq. (11) gives R(x)=1, reproducing the Gouy- p, the roughness function approaches the two obvious lim-

Chapman result for capacitance of a flat interface. its
Equation(11) is our central result: it correlates the ca-

pacitance with the morphological features of the interflace

andg(K). It can describe the effect of both random rough- IV. EXAMPLES OF DIFFERENT SURFACE

ness and periodical corrugation. In the latter case the integral MORPHOLOGIES

JdK/(2m)? should be replaced by the sug'S, . A. Euclidean surfaces

The asymptotic laws for the capacitance at small and
IIl. LIMITING LAWS large Debye lengthfgiven by Eqg.(1") and Eq.(13) or Eqg.
Consider the behavior of expressmihL) for two extreme (16)] are universal for weak Euclidean roughness. However,
cases: (a) the Debye length* is shorter than the smallest the specific form of the roughness function depends on the
characteristic correlation length of roughndsg,, and () ~ Morphology of the interface. When the roughness may be
x~ is greater than the maximal correlation lendth,.  described by a one scale correlation function,
These two limiting cases can be realized experimentally, g(K)=12u(KI) (18)
changing, for instance, the electrolyte concentration. Note '
that the concept of characteristic correlation length break%q (11) can be rewritten as
down for fractal surfaces, which we discuss specially in Sec.

IV B. ~ h?
For k1<l ,,,, one may expantk®+K?2in the integrand R(k)=1+ 17 f(«l), (19
of Eq. (11) using the smallness d@K/x)?, Eq.(11) then re-
duces to
where

1 (H? ] 13

R(k)= i 1 »

R(x) R[ 1= %r K2 | f(x)= 5 XZJ dt tut)[(1+t3/x>)?—1]. (20
0

Here we used the expression for the mean area of a random

surface, In this case the roughness induced change of the capaci-

tance is proportional to the square of the “roughness slope”
hz h/l and thescaling function {x) of a single variable: the
=R= f _2 g(K (14) ratio of the correlation lengtliperiod of roughness to the
(2m Debye length.
. ] Consider two examples of surface morphologies, which
valid up to the terms of the second orderénand the defi- |ead to two different scaling functions and represent two

Sreal

nition for the mean square curvature types of roughness: deterministic and random.
) 4 (1) Periodical corrugation: &R)=h sin(2mx/lS). In
(1) = h f dKK a(K) (15 this caseK=(2mm/l;,0) and &K)=hS(dp, = o, -1)/2I,
(2m)? ' wherem=0, *1, *2,. .. ands,, -, is the Kronecker symbol.
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FIG. 1. Scaling functions for rough Euclidean surfacéb.
f(x) /= for sinusoidal corrugatiofEq. (21)], (2) f(x) for Gaussian « [Egs.(19), (22)] for the random Gaussian surfaces=80, h=5
roughnesgEq. (22)]. [The factor 142 is introduced to compare nm, 1= (1) 1’0 (2) 15. (3) 20 nm '
R(x) for the two morphologies at the same geometrical roughness ' ' ’

factor]. Here,| is the crossover length from the self-affine to satu-
rated roughness, and its interplay with® is important. The
minimum self-affinity scale would not enter the results if
k>l ., which is usually the case fdr,,, of atomic di-

FIG. 2. Roughness functioR versus the inverse Debye length,

This leads to the roughness factr=1+27*h?/|2 and to
the scaling function of argumen .,

2\ 112 mensions and* for solutions of moderate concentrations.
f(x)=x%| 1+ _2> —1]_ (22) The height-difference correlation function is related to the
X height-height correlation function, introduced above, as
(2) Gaussian roughnes3he most widely used approxi- (|h(R"+R)—h(R"|?=2h1-g(R)] (24)

mation for a random Euclidean roughness is the isotropic

Gaussian model. It characterizes the roughness spectrum byhere g(R) is obtained fromg(K) by an inverse Fourier
two parameters: the rms heightand the tangential corre- transform.

lation lengthl. In this caseg(K)=l2 exp(—I 5K?/4) [i.e., The roughness exponeht, 0<H<1, determines the sur-
u(t)=mexp(—t%4)], the roughness factoR=1+2h?%/13, face texture(the degree of surface irregulasifyand is asso-
and the mean square curvatuf®®=8h7/I&. The scaling ciated with a local fractal dimensio®=3—H [33] . Small

function of xl 5 here takes the form values ofH correspond to extremely jagged or irregular sur-
5 faces, while large values &f describe surfaces with smooth
f(x)=2mx exp(x24)[1-D(x/2)], (22)  hills and valleys. As our approach is valid only for slightly

. . . rough surfaces, it would not be wise to consitter1/2.
whered(2) is the probability functiori31]. The height-difference correlations of any real surface

Note thgt the meani.ng of the characteristic lateral lengthy, st saturate at sufficiently large tangential lengths to the
may be different for different types of roughness. For ex-, e 12 A “reduced” self-affine scaling law has been

ample, at the same rnfg the same geometrical roqghness proposed 34] that has such a long-length cutoff
factor R would correspond té,= 7l . Then, according to

Eqg. (19), one should compare the Gaussian scaling function {Ih(R’ +R)—h(R’)|2>=2h2{1—exp[—(R/I)ZH]}.

with the sinusoidal scaling function divided by’. Such a (25
comparisonFig. 1) shows a small difference in the range of ] i
intermediatex! . Naturally, both models reproduce the limit- For H=1 Eq.(25) reduces to the Gaussian correlation func-
ing laws (13) and (16) [32]. The roughness function for the tion _d|scussed above. The 2D—Founer transform of this
Gaussian model is shown in Fig. 2. The framework of thefunction cannot be calculated analytically, except for the
perturbation theory(7) does not allow us to consider the cases oH=1 andH=0.5. Therefore it is convenient to di-
region of largex, kh=1. However, as we see from Fig. 2, far rectly approximate the functiog(K) (which we need for the
before this range the roughness function levels off to the&alculation of capacitangeFor 1/2<H<0.8, the approxima-
geometrical factoR. Therefore this condition is not critical. 0N

2al?

B. Self-affine fractal surfaces g(K)= (A KAZ2H)FFT

(26)

In the above given examples the roughness spectrum was
characterized by a single in-plane correlation lerigtHow-  suggested in Refl35], reproduces fairly well the Fourier
ever, recent efforts aimed at understanding the properties afansform of the correlation functiog(R) for self-affine
rough solid surfaces have demonstrated that a wide class éfactal surfaces. The use of approximati@®) leads to the
them is well represented by a self-affine model of roughnesscaling function
[33]. In this case, within a certain confined range of distances
there is no characteristic scale, i.e., the height-difference cor-
relation function{|h(R’+R)—h(R’)[?), follows a power law

T(H—1/2)
T(H+1/2)

(In(R"+R)—h(RH|H~(RM, |l in<R<l. (23 XF(H+1H-3 H+3%1-2H/x?), (27

f(X) — (X)Z(lfH)ﬂ_(ZH)HJrl
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ROUGHNESS FUNCTION R

0 0.2 0.4 0.6 0.8 1
K (nm™)
FIG. 4. Roughness functidR versus the inverse Debye length

[Egs.(19), (27)] for the self-affine fractal surfaces=80,h=5 nm,
=100 nm,H=(1) 0.55,(2) 0.6 (3) 0.65,(4) 0.7.

In(xl) IV. COMPACT LAYER CONTRIBUTION

FIG. 3. Scaling functions for the self-affine fractal surfaces By extending the linearized version of the Gouy-

[Eqgs.(27)]. The roughness exponert=(1) 0.55,(2) 0.6,(3) 0.65, Chapman theory to rough surfaces we have established how
(4) 0.7. the space charge linear response capacitance at rough

interfaces(metal-electrolyte, metal-semiconductor, or semi-
conductor-electrolytediffers from the one for the flat sur-
the Gauss hypergeometrical functifi]. As before, thex faces. In semiconductors the concentration of charge carriers

dependence of the roughness function is determined by tHg relatively small and when the contact is perfect the space
charge entirely determines the net interfacial capacitance. In

one-parameter scaling function. However, the asymptotic bez ,
havior of R(x) for x~ <l the context of t_he metal-electro_lyte interface, we have con-
sidered, essentially, the so call@iffuse layercapacitance. A
common assumption in electrochemistry is that one must
~ h? (1 " also introduce the contribution of thrwmpact layemwith the
R(k)=1+ 1z (1) (A1) 7r(2H) capacitanceC,,, connected in series with the diffuse layer
contribution. The total capacitance is then given by

wherel'(z) is the Euler gamma function atél «, 8, y,2) is

XT(1-H)T'(H-1/2), « <l (29
1 1 1
differs essentially from the case of Euclidean surfaces, given tot H

. . . . 71 <
by Eqg.(13). The reason for this is quite obvious. Fer <l This ansatz was first suggested by Grahd8, who com-

the roughness function should be close to the geometrical. . )
roughness factoR=S,.,{S, but for the fractal surfaces the fPined the ideas of Helmholtz about the existence of a mono-

value of the true ares.., depends on the resolutiér ) of molecular layer on the electrode with the Gouy-Chapman

an instrument used for the measurements. As we have a‘tlheory. It was assumed that electrolyte ions do not penetrate

ready mentioned Eq28) cannot be used for the description into the compact layer and its capacitance does not depend

; : on their concentration.
of the surfaces with the roughness exportérdiose to unity. The validity of the Gouy-Chapman-Grahame theory is

e el of 1S faubac & he UnCLats )57 usualy checked b drauing URarsons Zobel ot LIy
The asymptotic behavior of the roughness function for¥irsus 1€q for different electrolyte concentratior{$7].
I e straight line with thg unit slope approves the Gouy—
Chapman theory for the diffuse layer, and the corresponding
intercept determines the value ofCl. Slopes lower than 1
- h2 ['(H-1/2) are usually attributed to the geometrical roughness fdétor
R(x)=1+ 1z (K|)\/§(WH)3’ZW, k1>l Deviations from the straight line are regarded as indications
(29) of specific adsorption of ion9].
The whole concept, based on the division of the compact
and diffuse layer parts, was always a matter of concern in
is similar to the case of Euclidean surfaces. Due to the satudew of molecular dimensions of the compact lay&8].
ration of the rms roughness at large lateral distances thelowever, the contribution to capacitance, independent of
double layer does not feel fractal features of the surfacelectrolyte concentration, i.e., the finite value of the intercept
when the “yard stick” x ! exceedd. on the Parsons-Zobel plot, is an experimental fact. Further-
The scaling functionf(«l) is shown in Fig. 3 over the more, the molecular theory of the electrolyte near a charged
wide range ofxl| values. In agreement with E@28), the  hard wall[39] and the phenomenological nonlocal electro-
fractional power law is observed in the self-affine regime,static theonf40] both predict such a contribution without an
xI>1. Typical curves of the roughness function for self- artificial introduction of any “compact layers.” This results
affine surfaces are plotted in Fig. 4. as an effect of the short range structure of the solyémt
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For h=50 A, 1=100 A our calculations give
47h?/eL=6.5 A of the intercept. Since the experimental
values of the intercept are usually positive, that means that
the negative extrapolation value is compensated by the com-
pact layer contribution. Thus in order to get a value of
C&a=20 ,F/cnf, which is typically observed, one must
have C,;<10 uF/cnf. Therefore the evaluation of the true
compact layer contribution from the extrapolated intercept
needs an essential correction for rough surfaces.

(2) Extended region of non-Gouy-Chapman behavior.
Considerable curvature of the plot is seen, e.g., in Fig. 3 in
the region ofxl ~1. However, generally, the Parsons-Zobel
plots are not convenient for the characterization of
-20 . : . . the_surface roughness. More convenient would be the plot

0 10 20 30 40 50 of R(k)={1/C,,;,—1/C,;} 4Csc} ! versusk. If the accuracy
o would allow, the limiting lawg13) and(16) may be studied,
VCec  (4) giving important roughness parameters2 andh?/L. A
nonlinear regression fit of the whole curve would glven
the case of self-affine surfaces the measurementR(ef
versusk in the region of high concentrations would give the
roughness exponeit.

(3) Compensation of deviations from the Gouy-Chapman
theory at large concentration3he interference between the
solvent structure and Debye length rounds the Parsons-Zobel
plot down from the straight line in the high concentration
region[41]. The roughness effect does the opposite. The two
effects may compensate each other for very sipahd the
Parsons-Zobel plot will appear “more straight” than it
should be for an ideally flat surface.

(A)

1/C

100

80t

(A)

60}

40}

/o

20

0

_20.

0 20 40 60 80 100 V. CONCLUSION AND OUTLOOK

1/Coe A We have developed a theory of the space-charge double
layer capacitance at rough surfaces. The interplay between
FIG. 5. Parsons-Zobel plots: inverse space-charge capacitanége Debye length "?‘”d the Ien_gths CharaCte”Z|.ng surface
for the random Gaussian surfaces versus the inverse Gou%?uqh.ngss was studied. The derivation of the main formulae
Chapman capacitan¢Eg. (1)]. Curves:(—) the plot, calculated via as .“m'tEd to t_he case of_weak roughness, i.e., when the
Egs. (1), (19), (22); (-----) Gouy-Chapman plot{--) the large amplitude of height fluctuationis is smaller than the corre-
Deb.ye Ie’ngth(,smally Coo asymptotic law.h=5 nm, 1=10 nm lation lengthl. Extension on the case of strong roughness
e=(a) 80, (b) 20. ’ " would require laborious efforts. However, the two limiting
laws of small and large Debye lengths, obtained in the

Experimental data for a set of simple metals and polar solPresent work, should retain for the case of strong roughness.

vents give typical values of the compact layer capacitancd huhs as an ir;]terlpolation, one Ip}““{ ehxtefnd ou; phresent rhesults
[9,38], (47C,./S,.) =0.1-0.8 A. fo the case oh~1. However, ath>| the form of the rough-

Equations(1') and (11) suggest that roughness leads toness function may differ considerably from the obtained ex-

deviations of Parsons-Zobel plots from linearity. Figure 5P'€SSIONs.

demonstrates it for the case of the Gaussian roughness, with- A Méthod for the study of surface roughness by the mea-
out a compact layer contributiofthe intercept is kept at surements of the space charge double layer capacitance at

zerg. Adding the compact layer one should bear in mind thatvarie.d De_bye Iength is suggested. Within .the framework of
C,, would also vary with the variation &R the linearized Poisson-Boltzmann approximation used, the
HSeveraI conclusions follow from thesé figures. Debye length variation is provided by the variation of the
(1) “Negative” intercept. Extrapolation of the curves in density of charge carriers. The effective Debye length can
Fig. 3@ from the smallx range to the limit of largex also vary with the variation of electrode potential. The form
(1ICo=0) gives an “apparent’negativeintercept. Equa- and the magnitude of this effect depend on the sydie

tion (16) derived for Euclidean surfaces gives the value oftre”dS could pe differgnt for liquid and s_olid electrolytes
the intercept—4mh?/&LS. The intercept with account for a [30]). The nonlinear Poisson-Boltzmann variant of the theory

compact laver is aiven b is currently in progress.
P yeris gv 4 The suggested method for the study of surface roughness

2 should be first tested on surfaces with roughness character-
1 1 4xh - X ; ;
= (31  istics known from alternative conventional studies, such as,
C(extrap C eLS . . L . .
tot H electron microscopy in UHVin situ scanning tunnel micro-
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scope(STM) or optical methods. It would also be interesting surface charges at varied ionic strength of the surface inac-
to test the theory predictions on electrodes with deterministive electrolytes. It would be fascinating if this classical tech-
tic, designed roughness, e.g., on a sinusoidally corrugategique of electrochemistry shed light on the microroughness
surface. In such experiments one may vary not only the Deof metal surfaces. Since the interpretation here is transparent

bye length, but the corrugation period in a series of samplesand unambiguous, we believe that this method will soon be
As anin situ method, it will be of special value when the jn common use.

medium bounding the metal is nontransparent for radiation
and inaccessible to STM. This would be the cases of metal-
semiconductor or metal-solid electrolyte interfaces, in par-
ticular. Strictly speaking, we would need the nonlinear vari-
ant of the theory, to have a framework for the interpretation A.A.K. and M.U. are thankful to Professor U. Stimming
of the data, based on the potential variation of the Debydor a useful discussion. M.U. is thankful to Deutsche Akade-
length. Meanwhile, one may focus on the experiments on thenischer AustauschdienDAAD) and to Professor U. Stim-
capacitance of the metal-electrolyte interface at the smalhning for hospitality.
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